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ABSTRACT

Cobalt-chromium-molybdenum (CoCrMo) alloys are common wear-exposed biomedical alloys
and are manufactured in multiple ways, increasingly using additive manufacturing processes such
as laser powder bed fusion (LPBF). Here, we investigate the effect of proteins and the
manufacturing process (wrought vs. LPBF) and building orientation (LPBF-XY and XZ) on the
corrosion, metal release, tribocorrosion, and surface oxide composition by means of
electrochemical, mechanical, microscopic, diffractive, and spectroscopic methods. The study was
conducted at pH 7.3 in 5 g/LL NaCl and 5 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer,
which was found necessary to avoid metal phosphate and metal-protein aggregate precipitation.
The effect of 10 g/L bovine serum albumin (BSA) and 2.5 g/L fibrinogen (Fbn) was studied. BSA
and Fbn strongly enhanced the release of Co, Cr, and Mo and slightly enhanced the corrosion (still
in the passive domain) for all CoCrMo alloys, and most for LPBF-XZ, followed by LPBF-XY and
the wrought CoCrMo. BSA and Fbn, most pronounced when combined, significantly decreased
the coefficient of friction, due to lubrication, the wear track width and severity of the wear
mechanism, and the tribocorrosion for all alloys, with no clear effect of the manufacturing type.
The wear track area was significantly more oxidized than the area outside of the wear track. In the
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reference solution without proteins, a strong Mo oxidation in the wear track surface oxide was
indicative of a pH decrease and cell separation of anodic and cathodic areas. This effect was absent
in the presence of proteins.

Keywords: albumin, fibrinogen, friction, surface, microstructure, metal release

1. Introduction

The number of hip and knee replacements is estimated to continue increasing worldwide.!”? Cobalt
chromium molybdenum (CoCrMo) alloys are widely used for orthopedic and dental implant
materials due to an appropriate balance between mechanical strength, wear and corrosion
resistance, and biocompatibility.>

Traditional processes for manufacturing CoCrMo implants include casting, hot forging, and
subtractive processes, which are associated with various drawbacks, such as solidification defects,
high cost, and limited flexibility in the personalization of the implants. Additive manufacturing
(AM) has grown noticeably in importance for producing highly customizable implants.* Over the
past few decades, laser powder bed fusion (LPBF), also referred to as selective laser melting
(SLM), has been one of the dominant AM methods for implant materials.* It is well known that
the manufacturing method can be a decisive factor affecting the corrosion and tribocorrosion of
CoCrMo alloys because it affects the microstructure, defects, and surface properties important for
the corrosion and wear mechanisms.>® In recent years, electron beam melting (EBM) has also
gained prominence in producing orthopedic implants. EBM generates parts with no residual stress,
thanks to the hot process and a controlled vacuum environment. Its cost-effectiveness and ability
to process reactive materials make it ideal for biomedical applications, including orthopedics and
maxillofacial surgery.” However, this paper will focus on the more common LPBF process.

In sliding parts, such as the components of artificial joints and dental implants, corrosion and wear
processes are the main concerns and are associated with the release of metal ions, species, and
particles (short: metal release).®” Metal release into tissues that surround implants can be
associated with adverse effects such as osteolysis, reduced bone mineralization, metallosis,
inflammation involving macrophages, aseptic lymphocytic vasculitis-associated lesions
(ALVAL), granuloma, pseudotumours, and aseptic loosening.® 113 Also, as low as 0.4 pug/L of
Co in the blood of patients can cause measurable neurologic toxicity'* and the metal release from
CoCrMo can cause metal allergic reactions,'® increased periprosthetic infection risks,'*'® and even
trigger or deteriorate autoimmune conditions'® such as fibromyalgia, inflammatory arthritis,
systemic lupus erythematosus (SLE), and Sjogren’s syndrome.

There is no consensus on whether the corrosion and tribocorrosion resistance of CoCrMo alloys
produced by LPBF and EBM, or AM in general, is greater or smaller than that of traditionally
manufactured CoCrMo in relevant physiological conditions or in-vivo. This depends on the
specific system and manufacturing methods/parameters. Two studies in various simulated
physiological conditions found no corrosion differences between LPBF CoCrMo and wrought or
cast counterparts (low carbon and unknown carbon content).2%2! Our previous study comparing
LPBF CoCrMo with a high carbon cast CoCrMo showed improved corrosion resistance of the
LPBF CoCrMo, due to fewer Cr-rich carbide precipitates at grain boundaries.??
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Recent biocorrosion assessments of CrCrMo samples fabricated by laser-directed energy
deposition in simulated body fluid revealed a spatially non-uniform and differential corrosion
mechanism.?® The corrosion evaluations of lattice-type (controlled porosity) CoCrMo (0.35 wt.%
C) specimens for bone ingrowth fabricated with LPBF showed a relatively high corrosion
resistance in simulated body fluid.?* In a recent study,?® the influence of scan speed on the
corrosion and tribocorrosion properties of LPBF CoCrMoW samples was examined, showing that
the laser scan speed could directly affect the microstructure and subsequently impact the corrosion
and tribocorrosion behavior of the samples. The surface of as-printed LPBF CoCrMo is very
different from abraded/polished surfaces of either LPBF or traditionally manufactured CoCrMo
and has been shown to influence corrosion and biocompatibility.?6->” LPBF CoCrMo fabricated in
different building orientations (perpendicular and parallel to building direction) may or may not
exhibit different corrosion behaviors, depending on the carbon content, heat treatment, and
environmental conditions.?*?” Our previous study suggested that a suitable biomedical
manufacturing protocol, including low-carbon CoCrMo feed powder and a suitable heat treatment
protocol, can eliminate any differences in building orientations.?

The manufacturing process and microstructure are, hence, critical to the corrosion resistance of
CoCrMo in simulated physiological conditions. In addition, they also play a major role in
tribological processes and are therefore essential to the tribocorrosion (the combined effect of
corrosion and wear) of CoCrMo alloys,?®?* which are used in wear-exposed components. The
tribocorrosion of CoCrMo also strongly depends on the physiological environment; for example,
it has been reported that its corrosion rate strongly varies in different patients’ synovial fluids.*
Some of the chemical components of interest are salt (NaCl), complexing agents and proteins, pH,
and oxidative potential (related to inflammation).?”-31-* Proteins have been widely reported to act
as lubricants in a tribocorrosion situation and to hence reduce the rate of wear. Still, they can also
increase the chemical degradation rates affecting corrosion and tribocorrosion.?® ¥-4° They also
seem to play an important role in the formation of so-called tribolayers, which can reduce the
coefficient of friction.*!**? Proteins are very variable and may influence the tribocorrosion behavior
of CoCrMo alloys in multiple ways and as a function of microstructure. Recent review papers on
additively manufactured biomaterials have underscored the necessity for comprehensive research
efforts to address critical questions in this field.****> To the best of our knowledge, there have not
been any systematic studies on the tribocorrosion behavior of CoCrMo as a function of
manufacturing and protein type.

This study investigates the tribocorrosion behavior of LPBF fabricated in two different building
orientations and a traditionally manufactured (wrought) CoCrMo in simulated physiological
conditions in the presence of serum albumin or fibrinogen. By using a multi-analytical and
thorough experimental approach, we aim to give an answer on the individual chemical and
mechanical impact of serum albumin and fibrinogen on the degradation behavior of these three
CoCrMo alloys.

2. Materials and methods

2.1. CoCrMo
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LPBF CoCrMo fabricated perpendicular (XY') and parallel (XZ) to the building direction, Fig. 1a,
were described previously.?® In short, inert gas-atomized, spherical (15-45 pm) CoCrMo powder
was used as feed powder (chemical composition in Table 1) for the fully dense specimens
fabricated by a Renishaw AM400 Selective Laser Melting System with a discontinuous laser (40—
50 us exposure time, 60—70 um point distance). The processing parameters are depicted in Table
2, and the heat treatment process involved gradually heating the coupons to 450 °C over a period
of 60 minutes, holding them at this temperature for 45 minutes, reheating to 750 °C over 45
minutes, holding them at this temperature for 60 minutes, and then cooling them to room
temperature in a furnace.
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Figure 1. a) Schematic illustration of the building direction and orientation of LPBF CoCrMo
alloy coupons (LPBF-XZ and LPBF-XY) sized 15%15%2 mm. b) Schematic illustration of
tribocorrosion set-up. RE — Reference electrode; WE — Working electrode; UMT — Universal
Micro Tribometer.
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Table 1. Chemical composition of the biomedical Co28Cr6Mo low carbon alloy powder, as per
supplier information. Bal. — balance (remainder to 100%).

Element | Cr Mo Mn Si N Fe Ni C w Co

wt% 28.0 |6.10 |0.77 |0.57 |[0.22 |0.20 |0.05 |0.02 |0.02 |Bal

Table 2. LPBF parameters.

Power Spot size Scan speed Layer Scan spacing | Layer
thickness rotation
angle
200 W 70 pm 2m/s 40 pm 70 pm 67°

For comparison, a traditionally manufactured CoCrMo alloy was also investigated, consisting of
biomedical grade cobalt-chromium (28 wt%)-molybdenum (6 wt%) (CoCrMo) alloy disks,
conforming to ASTM F1537 Alloy 1, of 22 mm in diameter and 2 mm in thickness (a total surface
area of 9.0 cm?), supplied by Ionbond, Switzerland, and certified by Aubert & Duval, France. They
were produced by vacuum induction melting followed by electroslag remelting and warm working,
and were investigated previously.*® These specimens are referred to as ‘wrought’ in the following.

2.2. Microstructure characterization

Optical microscopy (OM, Keyence VHX-6000 Digital Microscope) and scanning electron
microscopy (SEM, Philips XL 30) techniques were utilized for surface and microstructure
characterization. X-ray diffraction (XRD) analysis was performed to identify the phases using a
Rigaku SmartLab X-ray diffraction system with CuKa radiation in Bragg-Brentano geometry
mode. Diffraction data were acquired over a 20 range from 35° to 100° with a step width of 0.02°
and a scan speed of 3°/min. The ICDD PDF-4+ 2023 inorganic database was used to search for
phase identification. For microstructure characterization, the specimens were polished with 0.25
um diamond paste and then electropolished for 20 s at 4 V using a 1:9 (by volume) solution of
HCI and H>O.

2.3 Choice of solution components

This study investigates the effect of two relevant proteins for implant surfaces; serum albumin and
fibrinogen. Bovine serum albumin (BSA) is a globular protein, which is net negatively charged at
pH 7.3, with an approximate molecular weight of 66,000 g/mol. The concentration of serum
albumin in the blood plasma is in the range of 40-60 g/L,*’ while it is about 12 g/L in synovial
fluid.** This study used 10 g/L BSA due to experimental challenges with protein aggregation at
higher concentrations*® and because it is a relevant concentration that is still far higher than what
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would be required for a complete adsorption of BSA on metal surfaces. *° Fibrinogen (Fbn) was
chosen because of its larger size, 340,000 g/mol. Its typical human blood plasma concentration is
2-4 g/L>° It is also net negatively charged at pH 7.3,°! and it is important for implant
biocompatibility.>? Its concentration in this study is 2.5 g/L. Since the adsorption of proteins is
strongly dependent on ionic strength and pH,>* it was necessary to use a relevant (0.15 M, pH 7.2-
7.4) buffer. However, previous research showed that Co and Cr strongly bind to phosphates,
jeopardizing the interpretation of experimental results in phosphate-buffered saline solutions.*® 34
Therefore, this study employed a sodium chloride (NaCl) and 2-(N-morpholino)ethanesulfonic
acid (MES) buffer. MES buffer was found to be least likely among various buffers to bind to
copper ions in a previous study.>

2.4. Corrosion studies without friction

Prior to the corrosion experiments, the surfaces were polished from P180 up to P1200 SiC, then
sonicated in acetone and ethanol, each for 5 min, rinsed with ultrapure water (18.2 MQ-cm
resistivity), and dried with nitrogen gas (room temperature). They were then stored for 24 h in a
desiccator (relative humidity <10%) prior to the experiment, to allow a reproducible oxide growth
among the specimens for the various testing conditions.

The corrosion behavior of the wrought and LPBF specimens was assessed using open circuit
potential (OCP), cyclic potentiodynamic polarization (CPP), and electrochemical impedance
spectroscopy (EIS) measurements in 5 g/l NaCl, 5 mM MES, 10 g/LL BSA (Sigma Aldrich
A7906), and 2.5 g/L Fbn (fibrinogen from bovine plasma, Sigma Aldrich F8630). The solution pH
was adjusted to 7.3 = 0.1 with NaOH. This solution is denoted NaCl+MES+BSA+Fbn. For
comparison, all the corrosion assessments were also conducted in a NaClI+MES solution (5 g/L
NaCl, 5 mM MES, pH 7.3).

The experiments were conducted using a ModuLab XM ECS Solartron potentiostat/galvanostat,
an Ag/AgCl in saturated KCl reference electrode, a counter electrode consisting of a platinum
sheet, and the specimen as the working electrode. Before each test, the specimens were immersed
for 60 min while measuring the OCP to reach a steady state condition. CPP was carried out with a
scan rate of 1 mV/s scanning from —0.25 V vs. OCP to 1 V vs. Ag/AgCl sat. KCI or when the
current reached 0.1 mA/cm?, followed by a reverse scan back to the measured corrosion potential.
EIS was conducted at OCP with an alternating current amplitude of 10 mVus and a frequency
range from 10,000 Hz to 0.01 Hz. The EIS results were fitted using Zview software.

2.5. Tribocorrosion studies

For tribocorrosion evaluations, all the tested surfaces (LPBF-XY, LPBF-XZ, wrought CoCrMo)
were ground to P1200 SiC (with water) followed by ultrasonic cleaning in acetone and ethanol,
each for 5 min, and drying with nitrogen gas at room temperature. They were then stored for 24 h
in a desiccator (relative humidity <10%) prior to the experiment. A ball-on-plate reciprocating
(linear) sliding configuration was used based on the ASTM G133 standard. Inert 5 mm diameter
AL O3 balls were used as the counter-body. The tribocorrosion tests were carried out in a two-
electrode tribocorrosion cell on a Universal Micro Tribometer (UMT) TriboLab (Bruker)
integrated with a ModuLab XM ECS Solartron Analytical potentiostat. The setup is illustrated in
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Figure 1b. The reference electrode was Ag/AgCl sat. KCI, and the CoCrMo coupons/disks (LPBF-
XY, LPBF-XZ, wrought) were acting as the working electrode. An applied normal load of 3 N
was selected. The reciprocating stroke length was 1.5 mm, and the sliding speed was 1 mm/s.
CoCrMo specimens were mounted into the tribocorrosion cell and slid against the Al>O; ball in
three different solutions: 5 g/LL NaCl and 5 mM MES (denoted NaCI+MES), 5 g/LL NaCl, 5 mM
MES, and 10 g/L BSA (denoted NaCI+MES+BSA), and 5 g/L NaCl, 5 mM MES, 10 g/L BSA,
and 2.5 g/L Fbn (denoted NaCl+MES+BSA+Fbn). All the experiments were conducted at 37 °C.
The solution-exposed surface area of the specimens was 1.5 cm? in all cases.

These tests were conducted in three steps. The first step was in static conditions (no friction) for
60 min to ensure steady-state conditions and measure the OCP. Next, there was the sliding process
with a normal load of 3 N for 60 min. Finally, the load was removed and the OCP value of the
specimen was continuously recorded for 30 min after the sliding process. The coefficient of friction
(COF) and OCP values were automatically recorded throughout the test, and each group of samples
was tested at least three times to investigate the reproducibility of the tests.

All presented potentials are against the Ag/AgCl sat. KCl reference electrode. COF data was
compressed, and the COF data was processed by an oscillating function using 50% in the middle
of each motion by the Viewer software (UMT, Bruker).

2.6. Post-tribocorrosion surface analysis

After tribocorrosion experiments, all the tested surfaces were investigated using scanning electron
microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS, Hitachi SU3900
Large Chamber Variable Pressure SEM).

Further, X-ray photoelectron spectroscopy (XPS), which can probe the chemical composition of
the outermost surface (7—10 nm) with detection limits of 0.1-0.5 atomic percent, was employed as
follows. One coupon/disk for each condition was analyzed within and outside the wear track. A
tribocorrosion specimen exposed to air (no solution), was also run for comparison. The XPS
analyses were carried out with a Kratos AXIS Supra X-ray photoelectron spectrometer using a
monochromatic Al K source (15 mA, 15 kV). The instrument work function was calibrated to
give a binding energy (BE) of 83.96 eV for the Au 472 line for metallic gold and the spectrometer
dispersion was adjusted to give a BE of 932.62 eV for the Cu 2p3/» line of metallic copper. The
Kratos charge neutralizer system was used on all specimens. All specimens were electrically
isolated from the instrument sample holder for these analyses. For measurements outside the wear
track, survey scans were carried out with an analysis area of 300 x 700 pm and a pass energy of
160 eV and high-resolution analyses were carried out with an analysis area of 300 x 700 pum and
a pass energy of 20 eV. For measurements inside the wear track (in the middle of it), a smaller
spot size of 110 um was used. High-resolution spectra for C 1s, O 1s, N 1s, Co 2p, Cr 2p, and Mo
3d were collected. High-resolution spectra were charge-corrected according to the main line of
adventitious carbon (284.8 eV).>® The C 1s high-resolution peak was fitted by four peaks, denoted
C1-C4: 284.8 eV attributed to the C-C and C-H bonds (C1), a peak at 286.3 eV (denoted C2)
assigned to peptidic residues, C-O, and C-N bonds, a peak at 287.8 eV (denoted C3) assigned to
N-C=0 and C=0 bonds, and a peak at 288.8 eV (denoted C4) assigned to O-C=0 bonds. Since
C2—C4 are more likely to originate from adsorbed proteins than from adventitious carbon, they
were used for the evaluation. The N 1s peak at 400 eV was attributed to organic nitrogen and was
used for the evaluation. For the three metal peaks, they were deconvoluted into their metallic and
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oxide components according to reference data.>’> All spectra with their fitted components,
including any information on peak overlaps, are presented in the supplementary information.

2.7. Metal release measurements under static conditions

All containers/materials in contact with solutions were acid-cleaned in 10% HNOs for at least 24 h,
followed by four rinses with ultrapure water (18.2 MQ cm resistivity).

The aqueous concentrations of Co, Cr, and Mo were measured from LPBF-XY, LPBF-XZ, and
wrought coupons ground with P1200 SiC paper (as prepared for the corrosion and tribocorrosion
tests) and exposed to two different solutions: 5 g/L. NaCl and 5 mM MES (denoted NaCI+MES)
and 5 g/LL NaCl, 5 mM MES, 10 g/L BSA, and 2.5 g/LL Fbn (denoted NaCI+MES+BSA+Fbn) after
24 h immersion at 37 °C in an acid-cleaned double-layer water bath electrochemical cell. One
blank sample, without test coupons, and triplicate samples were exposed for each solution and
specimen type. After the exposure, the CoCrMo specimen and solution were separated. The
specimens were rinsed with 1 mL of ultrapure water, and this solution was added to the solution
sample. Solution samples were stored in the freezer (—20 °C) prior to digestion and trace metal
solution analysis.

For solution sample digestion, 3 mL of solution samples and 0.333 mL 67% ultrapure nitric acid
were pipetted into an acid-cleaned PTFE decomposition vessel. The vessels were capped and
digested following EPA method 3052 (microwave-assisted acid digestion of siliceous and
organically based matrices) by using an ETHOS UP Microwave Digestion System. After
microwave digestion, solution samples were transferred into a 15 mL acid-cleaned flask and
refilled to 12 mL.

Inductively coupled plasma mass spectrometry, ICP-MS (ICAP Q, Thermo Scientific, Canada)
was used to measure the released amounts of metals into the solution. The levels of **Co, 3*Cr and
%Mo (ug/L) were quantified as the average of triplicate readings in each sample in KED mode
(kinetic energy discrimination) using argon as vector gas and helium as collision gas. For the
calibration, a multi-element standard solution was made in the digested solution (blank) as a
matrix; 0, 10, 30, 60 and 100 pg/L for Co, Cr, and Mo. The limits of detection (in both solutions)
were: Co: 0.37 ug/L, Cr: 0.25 pg/L, Mo: 0.02 pg/L. The corresponding blank concentrations
(colank), if detectable, were subtracted from the triplicate average of sample concentrations (ci).
Released amounts of metals (ug/cm?) were calculated by multiplying the blank and dilution factor
(DF)-corrected concentration (ng/L) by the exposure volume, V' (0.02 L), divided by the exposed
coupon area, 4 (0.5—3.5 cm?, depending on specimen), as shown in Eq. (1). The number of
replicates () was 3. The DF is a unitless factor determined from the final volume after digestion
divided by the initial sample volume; for example, it is 5 if 1 mL of solution sample is diluted with
4 mL of acid or water.

(¢; — Cplank) X DF X V

Released amount = ) (1)

2.8. Microhardness measurements
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The samples (LPBF-XY, LPBF-XZ, and wrought CoCrMo) were polished with a 1 um diamond
slurry. Microhardness measurements were performed on the polished samples using a LECO LM-
100 microhardness tester with a Vicker’s indenter using an applied load of 500 gf and a dwell time
of 15 seconds. Seven areas were measured for each sample.

2.9 Statistical analyses

A student’s t-test with unpaired data and unequal variance (KaleidaGraph v. 4.0) was used to
determine any statistically significant differences between two sets of data of independent
specimens. When the probability P that the data sets are equal was less than 0.05, the difference
was considered statistically significant.

3. Results and Discussion
3.1. Microstructural evaluations

Figure 2 shows optical micrographs (OM) of the as-built LPBF CoCrMo specimens with the plane
perpendicular (XY) (a) and parallel (XZ) (b and c) to the building direction. Similar to previous
work,%%! columnar grain morphology with an average grain size of 40 um can be seen for LPBF-
XY. As expected, a network of overlapping melt pools was formed on the LPBF-XZ surface of as-
built samples, Figure 2 (b, c¢). Columnar grains and cellular structures were observed, as in our
previous study?® and other studies®?%3. The wrought CoCrMo, in Figure 2d, consisted of a cobalt-
rich matrix (alpha phase) and large grains. No blocky carbides were visible for any of the
specimens, as they were dissolved after the heat treatment.?¢
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Figure 2. Optical images of the metallographic structure of the polished and etched CoCrMo
alloys: (a) SLM-XY, (b and c) SLM-XZ, and (d) wrought.

In this study, microhardness values were obtained for all the samples to investigate the impact of
hardness on tribocorrosion aspects. Average microhardness values of 447 + 7.7, 444 + 18 and 475
+ 10 HVo.5 were recorded for LPBF-XY, LPBF-XZ and wrought CoCrMo samples, respectively.
The wrought CoCrMo (microstructure in Figure 2d), was the hardest (statistically significant,
P<0.01, compared with both LPBF-XY and LPBF-XZ). This might be related to its
thermomechanical treatment.®* The variability in microhardness among different areas was largest
for the LPBF-XZ CoCrMo, as it had a rather heterogeneous microstructure (Figures 2b and c,
strongly oriented columnar grain growth).6>-6¢

X-ray diffraction patterns for LPBF-XY, LPBF-XZ, and wrought CoCrMo are presented in Figure
3. The XRD patterns show the samples mainly consisted of y-phase with a face-centered cubic
(FCC) structure and e-phase with a hexagonal close-packed (HCP) structure. These results are
consistent with previous XRD analyses of LPBF-XY and LPBF-XZ CoCrMo.2 % Based on the
reference XRD pattern, ICDD 01-087-9231, the main three peaks for the y-phase are y(111),
v(200), and y(220) located at 20 values 0f 43.78°, 51.00°, and 75.02° with intensities of 1000, 436,
and 192, respectively. Inspection of the XRD patterns reveals a difference in the texture in the y-
phase for the three samples. The relative intensities of the y-phase’s three main peaks for wrought
and LPBF-XZ are more consistent with the reference pattern than those of LPBF-XY, for which
the y (220) is more intense than y (111), suggesting a stronger (220) texture in LBPF-XY. This is

10
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in agreement with previous work.?? While the LPBF-XY sample seems to show less e-phase than
the LPBF-XZ and wrought samples, no conclusion can be drawn about this because of different
textures. It has been demonstrated that the y-phase is not thermodynamically stable and can be
transformed into the e-phase during cooling.®” During the LPBF additive manufacturing process,
the XZ plane is (re-)heated more than the XY plane.®® The XY plane, being more rapidly cooled,
therefore, may show less e-phase, while the XZ plane is more similar to the wrought CoCrMo.
This behaviour is more pronounced on the surface; a previous study on polished and unpolished
LPBF-XY samples showed no &-phase for the unpolished (and more rapidly cooled) surface than
the polished surface underneath.?

Intensity, | (a.u.)
}-

T TR A A TR TR T
Diffraction Angle, 26 (°)

Figure 3. X-ray diffraction patterns for LPBF-XY, LPBF-XZ, and wrought CoCrMo.

3.2. Corrosion without friction

Before changing the potential, the OCP was recorded for 1 h, Figure S1 (supplementary
information). The OCP was smoothly increasing with time for all specimens, suggesting an
adjustment of the surface oxide (passivation) and no localized corrosion. The final OCP values
were similar among the specimens and solutions, with no statistically significant differences;
-0.27 £ 0.02 V in NaCI+MES, -0.28 £+ 0.006 V in NaCI+MES+BSA, and -0.32 = 0.022 V in
NaCI+MES+BSA+Fbn. Based on the corrosion data extracted from CPP results (Table 3), it can

11
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be deduced that there is a slightly lower corrosion potential of the CPP, Ecor, in the protein-
containing than protein-free solution, and no significant difference for other corrosion parameters
(slopes of cathodic and anodic branches, Ba and B¢, corrosion and passive current densities, icorr and
ipass), Figure 4 and Table 3.

Among the specimens, the corrosion and passive current densities of LPBF-XZ were consistently
higher than those for the wrought and LPBF-XY specimens. It also showed a more positive Ecorr,
a less steep anodic branch as seen by a lower . value, and a steeper cathodic branch, with a higher
Bc value. This indicates quicker oxide buildup compared with the other specimens, which is also
confirmed by a steeper OCP increase with time, Fig. S1.

The shape of the CPP curves further indicates no localized corrosion, as indicated by a negative
hysteresis during the reverse scan. Also, there was no considerable difference between the sample
surface before and after the CPP as imaged by OM (data not shown). The passive region transfers
to a transpassive region at about +0.3 Vagagcr related to the dissolution of oxide and water
oxidation. ® These results are similar to other studies in similar electrolytes.?% 7

(a) NaCI+MES (b) NaCl+MES+BSA+Fbn
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Figure 4. Representative cyclic potentiodynamic polarization curves, with the absolute current
density (logarithmic scale) versus the potential vs. Ag/AgCl sat. KCl, of the wrought and LPBF
(XY and XZ orientations) CoCrMo alloy in (a) NaCI+MES and (b) NaCl+MES+BSA+Fbn at 37
°C.

Table. 3. Passive current densities (ipass) and corrosion potentials (Ecorr) based on potentiodynamic
polarization of the LPBF and wrought specimens after 1 h immersion in NaClI+MES and
NaCI+MES+ BSA+Fbn solutions 37 °C. Each parameter is based on measurements for at least
three replicate measurements showing the mean and standard deviations.

Ba BC iCOl‘l‘ ipass ECOI‘I‘

Solution Material
(mV/decade) | (mV/decade) (nA/em?) | (nA/em?)

(mVAg/AgCl)
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L;%F' 1815 98 + 15 06932511 36408 | —325+7

NaCl+MES LI;(BZF' 159 + 14 1199 06?31321 44401 | —318=1
Wrought | 189+ 10 111+ 13 0693270i 3841 | —317+5

L;%F' 175 = 12 91+ 10 Ob?é’ggi 3.6+0.5 | —430+19

Tﬁgfﬁlﬁﬁ LI;(BZF' 164 + 3 11722 06?310; 45+02 | —390+38
Wrought |  188+3 85+ 15 O(')%‘lo | 4007 | —420450

EIS measurements after 1 h immersion revealed, in agreement with the CPP measurements, that
the corrosion resistance difference among the specimens was small. Again, consistently, the
corrosion resistance of LPBF-XZ was the lowest, Figure 5 and Table 4, but this was not a
statistically significant difference (P > 0.05). Also, the addition of proteins slightly weakened (not
statistically significant, P > 0.05) the corrosion resistance of all CoCrMo specimens. A lower
corrosion resistance in the presence of proteins is expected from literature data for CoCrMo* and
for stainless steel 316L77! in similar artificial physiological electrolytes. More EIS details are
given in the supplementary information.
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Figure 5. Representative EIS curves in (a,b) Bode format and (c,d) Nyquist format for wrought,
LPBF-XY and LPBF-XZ in (a,c) NaCI+MES and (b,d) NaCI+MES+BSA~+Fbn after 1 h OCP at
37 °C. Symbols represent the data points. In a and b, solid symbols correspond to the |Z| axis and
open symbols correspond to the ¢ axis. Inset in ¢: Equivalent circuit (EC) used for modeling the
EIS data. Rs: solution resistance, CPEq:: capacitance of the double layer, Rci: charge transfer
resistance, CPEy: capacitance of the oxide film and R;: polarization resistance.

Table 4. Fitting parameters acquired from the measured EIS data in NaCI+MES and
NaCl+MES+BSA+Fbn (Rs: solution resistance, CPEq:: capacitance of the double layer, R.i: charge
transfer resistance, CPEy: capacitance of the oxide film, and Ry: polarization resistance). Mean and
standard deviation of three measurements.

Electrochemical parameters
CPEa R CPE¢ R
Electrolyte | Sample | R (2Q (Yo, 1w kQ (Yo, 1 (kgpz )(?3
cm”) ﬂ;;i’)ﬂ cm?) ﬂig)ﬂ cm?) (107)
LPBF- | 464+ | 304 + Of’ 1278 | 105+ | 0.84 + 62 A 125+
XY | 004 | 12 | 5| £25 | 29 | 001 | oo | 007
NaCLAMES LI;(BZF- 556.27 . 362.01 . Of 8%801 14;.25 L 0(.)8(()); 431'6 o.g(; +
: 11001 : : : 164.8 :

Wrought | 640 | 3574 Ofl 1234 | 11.84 | 080+ | 973.5 | 1.09+

232 | 39 | o |£492| 56 | 007 |+153| 05

LPBE- | o | ssss Of“ 1007 | 5y, o| 0.80% | 3285 | 0.1+

XY oor | =3 006 | £50 | 0.02

NaCIMES | LPBE- | o |, sz 1517 | 4, o093+ | 2118 | 01+
'BSA+Fbn | XZ st 005 | =133 | 0.07
091 1 4o 74 0.73+ | 6505 | 0.1+

Wrought | 20+2 | 61 £2 ()_j(c)l 73 163 0.05 +133 0.07

3.3. Metal release without friction

The released and non-precipitated amounts of Co, Cr and Mo in solution after contact with the
wrought and LPBF specimens for 24 h in NaCI+MES and NaCI+MES+BSA+Fbn (both pH 7.3)
are shown in Figure 6. The released amounts of Co, Cr, and Mo were significantly higher in the
presence of proteins for most conditions, especially Cr release, and also depended on the
microstructure. LPBF CoCrMo yielded more Cr and Mo release than the wrought CoCrMo.
Furthermore, the release of all three metals (Co, Cr, and Mo) increased in the protein-rich solution
as compared to the protein-free solution. In agreement with their highest corrosion current density
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and lowest polarization resistance presented in the previous sections, LPBF-XZ samples exhibited
the highest metal release, Figure 6.

It is notable that the buffer choice (MES) seemed to have been a good choice to avoid metal-
induced protein aggregation and metal phosphates that cause losses of released metals from
solution by precipitation. The release of metals from the wrought CoCrMo was lower in
NaCIH+MES than in PBS in a comparable study*® on the same material, but higher (especially for
chromium) in NaCI+MES+BSA+Fbn than in PBS+BSA+Fbn under otherwise similar conditions.
This indicates that especially Cr release is strongly underestimated in phosphate-containing and
protein-containing solutions, and fits with observations of a strong effect of Cr ions on bone
mineralization due to phosphate depletion.®

(a) Co (b) Cr (c) Mo
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Figure 6. Released and non-precipitated amounts of Co, Cr and Mo per specimen surface area
(ug/cm?) from CoCrMo specimens exposed to NaCI+MES or NaCl+MES+BSA-+Fbn for 24 h at
37 °C, pH 7.3 £ 0.1. The error bars show the standard deviation between independent triplicate
experiments. The inset in (c) is plotted with a smaller y-axis range to better show the range of
Mo released. Asterisks indicate statistically significant differences; P<0.05 - *; P<0.01 - **,
P<0.001 - ***,

3.4. Tribocorrosion examinations

In the absence of proteins, Fig. 7a, the COF was 0.30 + 0.075 and largely fluctuating, indicative
of particles or mechanical failures. The COF was lower in the presence of proteins, with 0.25 +
0.036 in NaCI+MES+BSA and 0.20 + 0.013 in NaCI+MES+BSA-+Fbn. The only statistically
significant  (P<0.05) difference was for LPBF-XY between NaCI+MES and
NaCl+MES+BSA+Fbn. A lower COF in the presence of proteins is expected due to the lubricating
nature of proteins.>% 72

The OCP curves before, during, and after the friction period (Fig. 8) indicate that the greater COF
for NaCI+MES compared with the presence of proteins, is caused by a greater activation of the
surface. This is visible by i) a greater potential drop on the onset of friction after 60 min (Figs. 8a
and d), and i) larger fluctuations of the OCP during the friction period (Fig. 8a) in NaCI+MES
compared with the other solutions. OCP fluctuations are caused by the passivation-activation
transitions of the wear track in a tribocorrosion system.”® The activation of the wear track is due
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to the mechanical removal or dissolution of the passive layer during the rubbing step
(depassivation).”*7® After stopping the friction (at 120 min), the potential increased for all
specimens back to initial values, which is attributed to complete repassivation, Fig. 8.
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Figure 7. Representative coefficient of friction (COF) curves (during the 60 min sliding period

only) versus time for the three CoCrMo specimens in three different solutions, all pH 7.3 at 37
°C: (a) NaCI+MES (no proteins), (b) NaCI+MES+BSA, and (c) NaCI+MES+BSA-+Fbn.
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Figure 8. (a-c) Representative OCP measurements (vs. Ag/AgCl sat. KCI) during tribocorrosion
examinations in NaCI+MES, NaClI+MES+BSA, and NaCI+MES+BSA+Fbn at pH 7.3 and 37
°C, and (d) the potential drop after 60 min (measured from 60 to 67 minutes for three
measurements, with error bars being the standard deviations between the three measurements).

As visible in Figure 8d, the potential drops were not significantly different among the three
specimen types, however, there was a significantly (P<0.05 for wrought and LPBF-XY') smaller
drop for the NaCl+MES+BSA+Fbn solution than for NaCl+MES. Also, for the wrought CoCrMo,
there was a significantly (P<0.05) smaller potential drop in NaCI+MES+BSA than NaCl+MES.

The post-examination of the wear tracks (Fig. 9) revealed grooves parallel to the sliding direction
and oxidized patches, which is typical for CoCrMo.””® Adhesive wear is a common wear
mechanism during the sliding of metals against ceramic couples.”” Plastic deformation and
ploughing phenomena occurred on the surface of all the tested samples but the wear tracks of the
protein-containing solutions appeared smoother and narrower. There was no clear difference
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between the three specimens in terms of wear track width, Fig. 9. The widest wear track was
consistently found after tribocorrosion in NaClI+MES, while the presence of the proteins decreased
the width of the wear track. Also, no solution at all (mechanical wear only) exhibited a narrower
wear track because of the absence of corrosion, Fig. 9. EDS mapping and spot analysis in and
outside of the wear tracks revealed the presence of carbon (C) and silicon (Si) along with the main
metal elements (Co, Cr, and Mo). Oxygen (O) was also detected, with higher levels present within
the wear track than outside of it (Figure S2, supplementary information). The higher levels of O
within the wear track could originate from oxide and/or oxide particles formed during the
repassivation of the surface.”

NaCl+MES ~Wrought = NaCl+MES — LPBF-XY. I NacleMES — LPBF-XZ .

B Wiought
W LPBF-XY
W LPBF-XZ

0
No Solution NaCl+ NaCl+ NaCl+
MES MES+ MES+
BSA BSA+
Fbn

Figure 7. Left: Typical SEM images of the worn surfaces observed after tribocorrosion tests in
NaCIl+MES and NaCl+MES+BSA+Fbn at pH 7.3 and 37 °C. Right: Average wear track widths
measured in five locations on one representative sample from each condition. The error bars
show the standard deviation of the five measurements on a single specimen.

3.5. Surface compositional analysis by XPS

Figure 10 shows the normalized surface composition considering only Co, Cr, and Mo in the
surface oxide and alloy beneath the surface oxide inside and outside of the wear track. In all cases,
the observation of metallic species suggests the oxide film thickness was on the order of only a
few nanometers. Oxide film thicknesses reported for a variety of Cr-containing alloys have been
on the order of 1-3 nm.?**2 When there was no solution, Figure 10a, there was a significantly
higher fraction of Co dihydroxide and oxyhydroxide in the surface oxide. The oxidized Co species
were even more abundant after friction (within the wear track). When exposed to the aqueous
solution, Figure 10b—d, there was a substantial decrease in oxidized cobalt species, suggesting
selective dissolution during immersion, leaving behind a Cr-rich oxide film. It is known that
Co(OH), and CoOOH are relatively soluble, in comparison to Cr, in aqueous solutions at pH 7.3.%°

There was a significant increase in the surface oxide fraction, especially the trivalent chromium
trihydroxide, within the wear track as compared to outside of the wear track, for all specimens and
solutions. This increase in the surface oxide fraction suggests a relative increase in oxide film
thickness within the wear track. The presence of Cr(OH); is expected due to the interaction of the
oxide with water and related hydrolysis reactions (through dissolution).®*
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There was also a relatively higher oxidized molybdenum fraction in the wear track for the
NaCIl+MES solution (for all three specimens), Figure 10b, as compared to outside of the wear
track. This indicates a decrease in pH in the wear track (since molybdenum oxides have low
solubility at low pH)® that is clearly influencing the corrosion. A ‘cell separation’ of both cathodic
and anodic reactions, accompanied by local pH differences, is assumed to contribute strongly to
tribocorrosion processes.®¢%” This effect is strongly suppressed in the presence of proteins, Figure
10c-d, as indicated by no significant increase in oxidized molybdenum in the wear track.
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Figure 10. Relative atomic percentage and speciation of cobalt, chromium, and molybdenum for
wrought, LPBF-XZ, and LPBF-XY CoCrMo. Outside (“Ref”) and within wear track (“WT”): 1 h
no sliding, followed by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at
37 °C at pH 7.3, either in (a) NaCI+MES, (b) NaCI+MES+BSA, (c) NaCI+MES+BSA+Fbn, or
(d) no solution. m — metallic state. Corresponding raw data of fitted spectra is presented in the
supplementary information.

Further, XPS revealed that the organic species, including the MES buffer and the proteins,
adsorbed on the surface, with more details in the supplementary material.

3.6. Further discussion
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In the absence of mechanical disruption of the surface oxide (absence of friction), the presence of
proteins strongly increased metal release at OCP (no applied potential), and slightly increased
corrosion, at pH 7.3 in this study. The effect was strongest for released Cr after 24 h immersion.
The Cr release into protein-containing solution is higher than in comparable literature data,*® for
two reasons: 1) a rinse of the surface of the CoCrMo coupons after the immersion test, with the
rinsing water added to the solution sample,*® 7 and ii) no phosphates in the buffer, which would
have caused Co and Cr precipitation.® #% 3% This work agrees with literature data on the increased
dissolution of Co and Cr powders in saline solutions in the presence of BSA and Fbn.®®

Tribocorrosion involves both mechanical action and chemical corrosion. In this study, it was clear
from the wear track width that tribocorrosion was greater than pure mechanical wear. In the
presence of the proteins, especially with the larger protein Fbn present, the COF and wear track
width decreased significantly. The lubricating action of the proteins dominated the tribocorrosion
process during the 60-minute period tested, which is similar to other studies.?**! Also, as visible
from no significant Mo oxide buildup in the wear track (XPS), the protein layer might have had a
local pH buffer effect and hindered or reduced the anodic/cathodic cell separation during
tribocorrosion.”? This is a very interesting finding, and the presented method to combine
tribocorrosion and spot size XPS analysis might be an interesting path for future studies of
tribocorrosion mechanisms in other systems, which should include other proteins and more
complex solutions. In fact, another study on CoCrMo in various physiological solutions used a
similar approach,’® however, with no clear trends on Mo enrichment in wear tracks even in the
absence of proteins.

In this study, the corrosion and metal release were slightly higher for the LPBF-XZ CoCrMo than
for the LPBF-XY and wrought CoCrMo specimens (in the absence of friction). This cannot be
explained by the phase, since LPBF-XY CoCrMo was the one deviating in terms of phase and
grain orientation based on XRD. The density of both grain boundaries and metal carbides has been
reported to be higher in the XY than the XZ plane,?®** which has been used as an explanation for
higher XY than XZ corrosion in H>O,-containing solutions®’ and 1% lactic acid®’ (the opposite of
this study, in which XZ showed more corrosion than XY). Because of the low carbon content and
heat treatment in this study, it is unlikely that secondary precipitations (carbides) would be a main
factor. Our recent study?® in PBS, citric acid, and PBS + citric acid concluded there was no
significant difference in corrosion resistance between abraded LPBF-XY and LPBF-XZ CoCrMo,
the same material as used in this study. Also, there was no significant difference in the surface
oxide composition or thickness between LPBF-XY and LPBF-XZ, as determined by XPS in this
study and for unexposed (just abraded) specimens in a previous study.?® Hence, the increased metal
release and corrosion of LPBF-XZ seen in this study are specific to the proteins (BSA and Fbn).
LPBF-XZ has a higher density of melt pool boundaries and a slightly higher density of lack of
fusion defects than LPBF-XY,?° but it is unclear whether that would influence protein-induced
COITOSION Processes.

In the presence of friction (in tribocorrosion investigations), no significant difference was found
between the three different materials despite significantly different microstructure and
microhardness. A previous study found superior tribocorrosion resistance for LPBF CoCrMo (0.04
wt.% C) compared with wrought CoCrMo (0.20 wt.% C) in a simulated body fluid without
proteins.’® This trend is similar to this study in NaCI+MES, but it was not statistically significant
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in this study, and there was no tribocorrosion difference among the materials in the presence of
proteins.

In this study, LPBF CoCrMo (both XY and XZ) showed significantly higher Cr and Mo release
than wrought CoCrMo into the protein-containing solution. This might be related to a quicker
passivation (surface oxide formation with Cr enrichment) due to a higher grain boundary density
of the LPBF CoCrMo.®’ This is also supported by XPS results (Fig. 10a), showing that the LBPF
CoCrMo surface area without contact with the solution and outside of the wear track had a much
thicker oxide enriched in Cr compared with the wrought specimen.

While tribocorrosion was decreased by proteins during the 60 min friction period in this study, it
is unclear whether their ability to chemically increase corrosion and metal release would have an
impact on tribocorrosion in longer tests. This should be investigated in future studies.

Conclusions

This study investigated the tribocorrosion behavior of LPBF fabricated in two different building
orientations (XY and XZ) and a wrought CoCrMo in NaCl+MES+BSA+Fbn (pH 7.3) and
reference solutions by electrochemical, tribocorrosion, surface and solution analytical methods.
The following main conclusions can be drawn:

1. BSA and Fbn strongly enhanced the metal release (Co, Cr, and Mo) and slightly
enhanced the corrosion (still in the passive domain) in static conditions (no friction) but
decreased the extent of tribocorrosion due to lubrication during the 60 min sliding test.

2. There was no influence of the manufacturing process or building orientation on the
tribocorrosion behavior, but LPBF-XZ, followed by LPBF-XY, exhibited the highest
corrosion and metal release in the absence of friction.

3. The combination of BSA and Fbn provided the strongest lubrication effect and smallest
OCP drop (smallest tribocorrosion) compared to BSA alone.

4. The wear track area was significantly more oxidized than the area outside of the wear
track. In the reference solution NaCI+MES (without proteins), a strong Mo oxidation in
the wear track surface oxide was indicative of a pH decrease and cell separation of anodic
and cathodic areas. This effect was absent in the presence of proteins.
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Figure S1. Representative curves of OCP vs. time recorded on LPBF and wrought CoCrMo
samples for 1 h at 37 °C in (a) NaCI+MES and (b) NaCI+MES+BSA+Fbn.

Details on EIS

In this research, EIS data were fitted using a two-time constant circuit (inset in Fig. 5S¢ in main
manuscript), as reported by previous studies investigating the corrosion resistance of the CoCrMo
alloy in simulated physiological solutions.!? In this circuit, Rs is the solution resistance, CPEq
represents the capacitance of the double layer, R is the charge transfer resistance, CPEr shows the
capacitance of the oxide film and R, is the polarization resistance of the system.! A constant phase
element (CPE) was used to replace the capacitor because of non-ideal behavior of the capacitive
elements due to the presence of surface roughness, impurities, dislocations, and grain boundaries.
CPE is defined in impedance representation as:

Z(w) = Zo(iw)™"
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where Zo is the CPE constant, o is the angular frequency (in rad/s), i = —1 is the imaginary number

and n is the CPE exponent. Depending on n, CPE can represent resistance (n = 0, Zo = R),
capacitance (n =1, Zo = C), or Warburg impedance (n = 0.5, Zo= W).

Very close values of Rs were recorded in NaCI+MES and NaCl+MES+BSA+Fbn (Table 4, main
manuscript) solutions for the LPBF and wrought samples. However, the addition of proteins
decreased the Rs, in accordance with previous work.!

EDS analysis

3-5 T T T T T T T T T T T

B Within wear track
B Outside wear track

Wrought LPBF-XY LPBF-XZ Wrought LPBF-XY LPBF-XZ Wrought LPBF-XY LPBF-XZ Wrought LPBF-XY LPBF-XZ

No solution NaCl+MES NaCl+MES+BSA  NaCl+MES+BSA+Fbn

Figure S2. The amount of oxygen detected within and outside of the wear track by means of
EDS spot analysis on wrought, LPBF-XY, and LPBF-XZ CoCrMo after tribocorrosion in no
solution, NaCI+MES, MaCI+MES+BSA, and NaCI+MES+BSA+Fbn, at 37 °C and pH 7.3.

XPS

Figure S3 shows the ratio of protein-related peaks to the total carbon of the C 1s XPS spectrum.
Both the MES and the proteins adsorb on the surface and contribute to high ratio values. It is not
clear whether there is any difference for adsorbed species inside and outside of the wear track.

Figure S4 shows the atomic ratio of organic nitrogen to protein-related carbon peaks. It should be
0.48 theoretically for BSA and higher for Fbn.* Here, it is lower in both cases, indicative of the
presence of adventitious carbon. There is no clear difference for the solutions containing MES or
proteins.
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Figure S5 shows the speciation (different components) of the O 1s peak. It can be seen that the
presence of proteins increases the signal of oxygen related to organic compounds, both within and

outside of the wear track.
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Figure S3. Atomic ratio of peaks at 286-289 eV (denoted C2+C3+C4) over total C 1s peak for
wrought, LPBF-XY, and LPBF-XZ CoCrMo. Outside and within wear track: 1 h no sliding,
followed by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C at pH
7.3, either in no solution, NaClI+MES, NaCI+MES+BSA, or NaClI+MES+BSA+Fbn.
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Figure S4. Atomic ratio of organic nitrogen (N 1s at 400 eV) to C2+C3+C4 for wrought, LPBF-

XY, and LPBF-XZ CoCrMo. Outside and within wear track: 1 h no sliding, followed by 1 h
reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C at pH 7.3, either in no

solution, NaCI+MES, NaCI+MES+BSA, or NaCI+MES+BSA-+Fbn.
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Figure S5. Speciation of O 1s peak (lattice oxygen, defective oxygen and hydroxide, and organics)
for wrought, LPBF-XY, and LPBF-XZ CoCrMo. Outside and within wear track: 1 h no sliding,
followed by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C at pH
7.3, either in no solution, NaCI+MES, NaCl+MES+BSA, or NaCI+MES+BSA+Fbn.
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Figure S6. Wide spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside of the wear track,

after tribocorrosion exposure 1 h no sliding, followed by 1 h reciprocal linear sliding at 3 N load,

followed by 0.5 h no sliding, at 37 °C, in no solution (as a reference).
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Figure S7. Co 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference).
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Figure S8. Cr 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference).
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Figure S9. Mo 3d high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference).
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Figure S10. O 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference).
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Figure S11. N 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference). The overlap with the Mo 3p peak is accounted for.
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Figure S12. C 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C, in no solution

(as a reference).
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Figure S13. Wide spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside of the wear
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track, after tribocorrosion exposure 1 h no sliding, followed by 1 h reciprocal linear sliding at 3

N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3, in NaCI+MES.
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Figure S14. Co 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaCI+MES.
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Figure S15. Cr 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES.
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Figure S16. Mo 3d high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES.
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Figure S17. O 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaCI+MES.
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Figure S18. N 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES.
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Figure S19. C 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES.
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Figure S20. Wide spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside of the wear
track, after tribocorrosion exposure 1 h no sliding, followed by 1 h reciprocal linear sliding at 3

N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3, in NaCI+MES+BSA.
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Figure S21. Co 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES+BSA.

S50


https://pubs.acs.org/doi/10.1021/acsbiomaterials.3c01165

Green open access version of https://pubs.acs.org/doi/10.1021/acsbiomaterials.3c01165

108 10
P FWEM LSh  Awe %A Wrought, s Neme o P FVEMO L@ A vidm Wrought,
* 3% B e gﬁigi o A\ . cr 5826 L0 GLGO) 1570 22 i L.
5oy e oy w2 s /'\ outside wear 033 T8 L0 GGy | inside wear
% 57634 250 GLGO) 31O 3 % ;-ﬁ; I?; Sﬁjgi
7 5
G i::g traCk 547 LI0 GLOY traCk
n L e ‘ ‘:]\::"‘7
.
© 8
. «
35.
85
By ) T 5 T T & A st s ST B
. = R ” BisticgEawrgy ()
1 100

.\'am!s S P‘urs. FWEM LSh Area %_-Ygea . L P B F—Xz’ .\ijn{ . lfos. FWHM LSh Area %Area LP B F_XZ’

110 GL(30) 6061 GLBO) 1512 18

30110 GLEO) 9524 30 A A “ GLGO) 2375 28
110 GL30) 2512 72 GL(30) 615 65 g g
s me \outside wear S e @ inside wear
110 43202 138 . GL(30) 98 126
118 LA(L3A, 18934 379 2 109 LA(1345) /18314 220 traCk

T T T T T T

580 535
Binding Energy (V) Binding Energy (V)

® Name Pos. FWHM L%h Area %Area LP B F-XY, o
Cr203-5 5904 110 GL(30) 5404 18
3oL GLGY) 8491 29
110 GL(30) 20070 6.8
248 GL(30) 8470 289
110 GL(30) 37438 128
110 GLGH™N 38597 132
8102 335

N Pos. FWHM LSh Area %Area
203 -5 5M16 110 GL(30) 1823 18 LPBF-XY’
1 5733110 GLG30) 2864 23 /
3 L10 GLGY) 6710 66 f
25 GL(30) 43605 428
%57 110 GLGY) 12028 124
L10 GLGY) 4019 128

track track

530
Binding Ensrgy (6V)

Figure S22. Cr 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES+BSA.
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Figure S23. Mo 3d high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES+BSA. The overlap of 3d and S 2s (only inside wear track) is accounted for.
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Figure S24. O 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaCl+MES+BSA.

S53


https://pubs.acs.org/doi/10.1021/acsbiomaterials.3c01165

Green open access version of https://pubs.acs.org/doi/10.1021/acsbiomaterials.3c01165

Wrought, Wrought,
| outside wear inside wear
. track track
/ N
/ . )
MW\'W%‘\»WN’\“VW N\,J// T ? WWH‘W/MWW’WM e \"‘/\fv'vw
LPBF-XZ, . LPBF-XZ,
outside wear i inside
track « wear
g track
: \\ :
0. WNWMMMMM/ RN - I N A A N \‘\«,M/vv\w\(
J LPBF-XY, LPBF-XY,
. | outside wear / inside
track ) | wear
! track
e 35, \
. 30. ) \
T SR | e SO

Figure S25. N 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaCI+MES+BSA.
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Figure S26. C 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES+BSA.
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Figure S27. Wide spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside of the wear

track, after tribocorrosion exposure 1 h no sliding, followed by 1 h reciprocal linear sliding at 3

N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3, in NaCI+MES+BSA+Fbn.
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Figure S28. Co 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES-+BSA+Fbn.
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Figure S29. Cr 2p high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+-MES-+BSA+Fbn.
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Figure S30. Mo 3d high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+MES+BSA-+Fbn. The overlap of Mo 3d and S 2s (inside wear track only) was

accounted for.
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Figure S31. O 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside
(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed
by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+-MES-+BSA+Fbn.
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Figure S32. N 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaClI+-MES+BSA+Fbn.
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Figure S33. C 1s high-resolution spectra of wrought, LPBF-XZ, and LPF-XY CoCrMo outside

(left) and inside (right) of the wear track, after tribocorrosion exposure 1 h no sliding, followed

by 1 h reciprocal linear sliding at 3 N load, followed by 0.5 h no sliding, at 37 °C and at pH 7.3,

in NaCI+-MES-+BSA+Fbn.
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