Electrochemical Techniques and Corrosion Research with **Industry Partners at Western** Chemistry

J.J. Noël May 1, 2019

Western Science

NUCLEAR WASTE MANAGEMENT

NUCLEAR WASTE SOCIÉTÉ DE 6 MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

SOCIÉTÉ DE GESTION DES DÉCHETS NUCLÉAIRES

ECTROCHEMISTRY & CORROSION SCIENCE

Well-Equipped Lab in Dept. of Chemistry

https://ecswestern.org/

Sample Preparation Facilities

Pdr-

Clockwise

ON

MECAPOL

APEX-S BACKING

-

ONLY

High Temperature Electrochemistry

....

0

~~

141

110

S 400 18

0 11 0

20

101

DANGER HOT SURFACES HIGH PRESSURES

1

Localized Scanning Probe Methods D

Logic

-

Innovative Novel In-House Designs

Other Equipment/Techniques

- Potentiostats (dozens) and FRAs
 - Voltammetry
 - Potentiometry
 - Polarization curves
 - EIS (Impedance Spectroscopy)
- Rotating disk and ring-disk
- Photoelectrochemistry
- IGF hydrogen analyzer
- Anaerobic chambers
- Scintillation counter

- Electrochemical quartz crystal microbalance
- Zero resistance ammeters
- Low current DC source
- Custom electrochemical cells
- Microelectrochemical cell
- ADC/DAC systems
- Rigorous QA regime

https://ecswestern.org/

Deep Geological Disposal Concept for Spent Nuclear Fuel

M. Garamszeghy, Report TR-2012-13, Nuclear Waste Management Organization (NWMO), Toronto, 2012.

Mark II Container Design Features

- Evaluation of the properties and corrosion performance of the coatings
- Corrosion performance compared to that of P-deoxidized wrought copper (as used in Sweden), for which a large database of corrosion information already exists

Full-sized container after closure, welding, and spray coating.

Evaluating the New "Mark II" Container

- Smaller, lighter (enabled by size of CANDU fuel)
- Manageable weight
- Standard ASME/ASTM steel vessel
- Deposited copper layer for corrosion protection (electrodeposited or cold spray coated)
- Copper only 3 mm thick
- More reliable
- \$2 B cheaper
- Can be manufactured in Canada

- Large container similar to those considered in Sweden and Finland
- More difficult to manipulate
- Inner steel vessel inserted into outer wrought copper shell
- Copper 25 mm thick
- Manufacture and assembly more challenging (1 mm gap)
- Canada lacks capability to produce this container

Electrodeposited Copper Coating

Refining the Electrodeposition Process

Possible Container Corrosion Processes in Anticipated Repository Groundwaters

15

Z. Qin, et al.; "The Establishment of Active/Passive Corrosion Conditions on Copper-coated Waste Containers in a Canadian Nuclear Waste Repository", <u>Accepted for Publication</u>, CEST, (2017).
T.E. Standish, et al.; "Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers", <u>Accepted for Publication</u>, CEST, (2017).
J. Chen, et al.; "The influence of sulfide transport on the growth and properties of copper sulfide films on copper", *Corr. Sci.*, 87 (2014) 223-238.

Reactions Inside a Failed Container

N. Liu, et al.; "The Electrochemical Study of Dy₂O₃ Doped UO2 in Slightly Alkaline Sodium Carbonate/Bicarbonate and Phosphate Solutions", Electrochim. Acta, **235** (2017) 654–663.

N. Liu, et al.; "Modelling the Radiolytic Corrosion of α-doped UO₂ and Spent Nuclear Fuel", *J. Nucl. Mater.*, Submitted (2017).

N. Liu, et al.; "Influence of Gd doping on the structure and electrochemical behavior of UO₂", *Electrochim. Acta*, Submitted (2017).

M.E. Broczkowski, et al.; "The role of dissolved hydrogen on rare earth-doped uranium dioxide corrosion in the presence of hydrogen peroxide", J. Electrochem. Soc., **158** (2011) C439-C444.

Short-Term Container Corrosion Processes

Z. Qin, et al.; "The Establishment of Active/Passive Corrosion Conditions on Copper-coated Waste Containers in a Canadian Nuclear Waste Repository", Accepted for Publication, CEST, (2017).

Corrosion at a Through-Coating Defect X-ray µ-Tomography Study of Galvanic Corrosion in Copper-Coated Steel Samples

T.E. Standish, et al.; "Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers", *Accepted for Publication*, CEST, (2017).

Hydrogen Absorption

M. Vezvaie, et al.; "Hydrogen absorption into titanium under cathodic polarization: An in-situ neutron reflectometry and EIS study", *J. Electrochem. Soc.*, **160**(9) (2013) C414-C422.

Positron Annihilation Doppler Spectroscopy

Embedded Chemical Sensors in Clay

Pressure Cells and Ocean Modules

Corrosion Properties of Ti-6Al-4V Samples Fabricated by Additive Manufacturing (3D Printing)

Powder bed fusion additive manufacturing (3D printing)

EBSD results showing phase distribution

10 µm

Plasma Electrolytic Oxidation of Magnesium Alloys

NEW electrochemical surface treatment to produce thick protective oxide coatings on metals

Parameters which can influence the coating properties

- ***** Electrolyte Composition
- ***** Coating Process Duration
- * Applied Current Density
- ***** Electrolyte Temperature

Surface morphology of PEO coatings on Mg

Complementing Electrochemistry with Surface Analysis

Degradation issues in various industries

- Corrosion of Ni-based superalloys in fluoride-containing environments
- Galvanic corrosion of metals coupled to carbon composites
- Degradation of heat exchangers/radiators
- Corrosion and degradation of powder coated metal components
- Cathodic protection and coating disbondment in oil and gas pipelines
- Development of custom equipment and instrumentation

Other Benefits to Partners

Development of HQP: employable expertise for industry.

