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X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface
chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been
widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum
(GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution
of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical per-
spective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of
functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting.
Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are
shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental
differences between the GLS and GLP functions. The GLS function better follows the ‘wings’ of the
Lorentzian, while these ‘wings’ are suppressed in the GLP. That is, these two functions are not inter-
changeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to
be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak
fitting. Examples of the uses of these functions are provided herein.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

X-ray photoelectron spectroscopy (XPS) is arguably the most
popular and important high vacuum surface analytical tool [1]. It
is unique in being highly surface sensitive, quantitative, and avail-
able in many laboratories and facilities, providing the elemental
compositions of all the elements except helium and hydrogen,
and yielding chemical/oxidation state information about the ele-
ments it detects [2]. Important decisions in the laboratory and in
industry are made based on XPS results [3], where much of the
key information derived from XPS is based on peak fitting narrow
(high resolution) scans. Indeed, as explained by Sherwood, peak
fitting is an indispensable part of XPS data analysis because
the chemical shifts that provide the rich chemical information
available through the technique and the widths of the fit
components have comparable values [4]. For many years XPS
practitioners have employed a variety of functions/peak shapes
in their fitting. These have included pure Lorentzians, which model
the fundamental/theoretical line shape, pure Gaussians, which
often model amorphous materials well, e.g., polymers and glasses,
Gaussian-Lorentzian sum and product functions, which consist of
either the sum [5] or product [4] of these two functions, Voigt
functions, which are the convolutions of Gaussian and Lorentzian
functions, and other more complex functions, including the
Doniach-Sunjic line shape [6]. Asymmetry must often be added
to fit components/peaks to model conducting materials [7].

In this paper we discuss five functions that have been widely
explored and used in XPS peak fitting: the Gaussian function, the
Lorentzian function, the Gaussian-Lorentzian sum function (GLS),
the Gaussian-Lorentzian product (GLP) function, and the Voigt
function, which is a convolution of Gaussian and Lorentzian func-
tions. A primary goal of this work is to compare the GLS and GLP
functions. Indeed, different software packages for XPS peak fitting
have different mathematical functions available in them. Thus, it is
important to understand these synthetic line shapes, i.e., to know
where they are best used and how to apply them. Arguments based
on convolution and the Central Limit Theorem are made to
justify the use of functions that are intermediate between
pure Gaussians and pure Lorentzians in XPS peak fitting. This is
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Fig. 2. The Lorentzian from Eq. (2) with parameters h = 1, E = 0, and F = 1.
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illustrated graphically by showing the results of the repeated con-
volution of a rectangle (slit) function with itself. Mathematical
forms for the GLS and GLP functions are presented, where they
each contain a mixing parameter, m, that ranges from 0 to 1. Plots
are shown for the GLS and GLP functions with different values of
the mixing parameter. The GLS function better follows the ‘wings’
of the Lorentzian, while, because of the more compact nature of the
Gaussian function, these ‘wings’ are suppressed in the GLP. The GLS
and GLP are compared to the Voigt function, where the GLS is
shown to be the better approximation of it. Thus, there are funda-
mental differences between the GLS and GLP functions, i.e., they
are not interchangeable. As shown below, both have their place
in XPS peak fitting.

Finally, while peak fitting plays a central role in the work up and
interpretation of XPS data, the use of other statistical tools and
mathematical analyses of XPS peaks and data are also important
[8,9]. These include chi squared, calculating and showing the resid-
uals, showing the sum of the fit components, the Abbe criterion
[10–12], uniqueness plots [13], peak smoothing/denoising, e.g.,
by wavelets [14,15], chemometrics tools such as principal compo-
nent analysis, multivariate curve resolution, and pattern recogni-
tion entropy [16], and width functions [17,18].
2. Results and discussion

2.1. Basic theory of convolution and the GLS and GLP functions

When peak fitting an XPS narrow scan, one generally selects a
baseline first followed by a series of peaks (usually synthetic fit
components) that represents the chemical/oxidation states [2] of
an element. We noted above that some of the most common func-
tions chosen to represent symmetric XPS signals are the Gaussian,
Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian
product (GLP), and Voigt functions. We now discuss these func-
tions in some detail.

Gaussian and Lorentzian functions play extremely important
roles in science, where their general mathematical expressions
are given here in Eqs. (1) and (2), respectively [19,20,12].

Gðx; F; E; hÞ ¼ h � exp �4 ln2
ðx� EÞ2

F2

" #
ð1Þ

Lðx; F; E; hÞ ¼ h

1þ 4 ðx�EÞ2
F2

h i ð2Þ

These Gaussian and Lorentzian functions are graphed in Figs. 1 and
2, respectively, with the following parameters: h = 1 (the functions
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Fig. 1. The Gaussian function from Eq. (1) with parameters h = 1, E = 0, and F = 1.
have a height of one), E = 0 (the functions are centered at the origin),
and F = 1 (the functions have a width of one). Note that Eqs. (1) and
(2) and many of those below follow the formatting of Fairley [19].
Obviously both functions are symmetric about their center points.
They also have finite integrals and are localized – they do not have
exceedingly large tails or other components that extend out to a sig-
nificant degree. The Gaussian curve is the classic ‘bell-shaped’ or
‘normal’ curve/distribution. The Lorentzian is somewhat narrower
around its maximum and it extends out a little more than the Gaus-
sian on its sides, i.e., the Lorentzian has ‘wings’. Any serious physical
scientist should know the difference between these two functions,
be able to recognize their shapes, and be comfortable working with
them.

In the theory of X-ray photoelectron spectroscopy, natural line
shapes are generally assumed to be Lorentzian. There are, however,
reasons why this line shape may not be observed experimentally.
There will be some line width of the X-rays that excite the photo-
electrons, i.e., they won’t be perfectly monochromatic. The photo-
electrons will travel through a spectrometer that will broaden
signals to some degree. The elements in question within a sample
may be in heterogeneous environments (disorder broadening), and
the emission of the photoelectrons may be perturbed by vibrations
in the material (phonon broadening), which is temperature depen-
dent. For a more detailed discussion of these concepts, see Briggs
and Grant’s book on Surface Analysis [19]. One can think of at least
some of these broadening mechanisms as being convolutions of
the natural, Lorentzian, line shape with other functions, often
Gaussians. (MRL previously published a tutorial article on convolu-
tion in Vacuum Technology & Coating. This document is included
in the Supporting Information of this article [21].) In mathematics,
the Central Limit Theorem states that it will often be the case that
if a function is repeatedly convolved with itself, or if a series of
functions are convolved together, the resulting function will
increasingly resemble a Gaussian. This function will also become
increasingly smooth and broad. We now illustrate these concepts
with the slit function, S(x), shown in Fig. 3. This function is impor-
tant enough to be referred to in other ways, including as P(x), Rect
(x), or simply as the rectangle function [22]. S(x) is an important
window, or apodization, function in signal processing, i.e., it has
a value of zero outside of a specific interval. In addition, there
are a number of interesting relationships between S(x) and other
common functions in signal processing, e.g., it can be derived from
the unit step function, h(x) (Eq. (3)), where S(x) is the product of h
(½ � x) and h(x + ½) (see Eq. (4)). Note that it rarely matters how
functions like h(x) and S(x) are defined at their transition points.
For example, if we redefined h(x) as 1 for x > 0 and 0 for x � 0, it
would only differ from the definition in Eq. (3) by a null function,
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Fig. 3. Graph of the slit function, S(x), with a width of 1.
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Fig. 5. Convolution of the triangle function with itself (T(x) * T(x)) forming a
function that appears rather Gaussian-like.
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i.e., for all practical purposes these functions will behave
identically.

UnitStepðxÞ ¼ hðxÞ ¼ 1 for x P 0
0 for x < 0

�
ð3Þ

SðxÞ ¼ h
1
2
� x

� �
h xþ 1

2

� �
¼ 1 for x 6 1

2

0 for x > 1
2

(
ð4Þ

Now, if we convolve S(x) with itself (S(x) ⁄ S(x)) we get the tri-
angle function, T(x), shown in Fig. 4. (Note that the triangle func-
tion may also be represented as K(x).) Of course this function is
still somewhat angular – it consists of line segments, however it
can be argued that it is beginning to resemble a Gaussian function
and that it does so to a greater degree than S(x). It also seems to be
getting smoother. That is, would you rather drive over bumps on a
road shaped like the features in Fig. 3 or Fig. 4? A more advanced
justification for stating that S(x) is smoother than T(x) is to note
that it only takes one derivative to reduce S(x) to delta (impulse)
functions, while it takes two derivatives to reduce T(x) to these
types of functions. Finally, note that the convolution of S(x) with
itself, T(x), is broader that S(x), i.e., S(x) has non-zero values
between �½ and ½, while, T(x) has non-zero values between �1
and 1.

We now convolve T(x) with itself, where T(x) ⁄ T(x) = T(x) ⁄
S(x) ⁄ S(x) = S(x) ⁄ S(x) ⁄ S(x) ⁄ S(x). The resulting function is
shown in Fig. 5. Consistent with the Central Limit Theorem it is
starting to look rather Gaussian-like – this function is smoother
and broader than its predecessor in Fig. 4. Thus, it would be
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Fig. 4. Convolution of the slit function in Eq. (4), with itself (S(x) * S(x)) forming a
triangle function, T(x).
reasonable to expect that it would require more derivatives to
reduce T(x) ⁄ T(x) to a series of impulse functions than T(x) or
S(x). All of this is to argue for the reasonableness of stating that
when a set of photoelectrons, which may inherently have a Lorent-
zian line shape, is perturbed by a spectrometer and/or the broaden-
ing mechanisms mentioned above, one would expect the final
signal to have at least some Gaussian character. Thus, the
recommendation [3] that the C 1s fit components of polymers be
modeled as 100% Gaussians or 90:10 Gaussian:Lorentzian mixes
seems reasonable because polymers will often exist in rather
heterogeneous environments, i.e., their chains can often be approx-
imated as random coils, which will correspond to a variety of bond
angles and chemical environments for the different chemical
groups/moieties within the polymer. Note that the photoemission
spectra from this example in the Literature were collected on an
older XPS instrument. In general, newer instruments produce sig-
nals with more Lorentzian character, i.e., this suggestion is no
longer entirely current. Also, peaks generated from polymeric
materials with newer instruments generally show some asymme-
try in their shapes.

A more advanced and precise mathematical justification for the
peak broadening mechanisms discussed herein is to note that vari-
ances add under convolution. That is, for two functions f and g with
variances rf and rg, their convolution (f⁄g) has a variance rf⁄g
given by:

r2
f�g ¼ r2

f þr2
g ð5Þ

For example, the convolution of a Gaussian with a second Gaussian
is yet an additional Gaussian, where according to Eq. (5), this new
Gaussian will be broader than either of the original Gaussians.

So we have argued that it is plausible that many of the compo-
nents of XPS narrow scans will be best defined and fit by peaks that
have both Gaussian and Lorentzian character. Mathematically, the
‘purest’ way to handle this problem is to use a Voigt function,
which is the convolution of a Gaussian and a Lorentzian. Histori-
cally, however, this convolution was found to be computationally
expensive so many of the earlier XPS fitting packages used one of
two approximations for it: the Gaussian-Lorentzian sum (GLS) or
the Gaussian-Lorentzian product (GLP) function. These functions
remain relevant today because (i) there are still a number of fitting
packages that provide the GLS and/or the GLP functions as options,
(ii) there is a great deal of Literature precedent for the use of both
of these functions, and (iii) these functions work – both the Liter-
ature and the examples provided below show that both the GLS
and the GLP remain useful and relevant in peak fitting. Indeed, it
is an active area of research to determine which synthetic function
is most appropriate in different situations.
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Fig. 7. Graph of the GLS function (Eq. (3)) with parameters h = 1, E = 0, and F = 1 for
(from bottom to top) m = 0, 0.1, 0.3, 0.5, 0.7, and 1.
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Fig. 8. Graph of the GLP function (Eq. (7)) with parameters h = 1, E = 0, and F = 1 for
m = 0 (bottom, blue line), m = 0.5 (middle, red line), and m = 1 (top, yellow line).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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The GLS function has the following form:

GLSðx; F; E;m; hÞ ¼ h � ð1�mÞ exp �4 ln2
ðx� EÞ2

F2

" #

þ h �m
1þ 4 ðx�EÞ2

F2

h i ð6Þ

Notice that the first and second terms in this function are the Gaus-
sian and Lorentzian functions in Eqs. (1) and (2) weighted by a mix-
ing parameter, m. That is, for m = 0, Eq. (6) reduces to Eq. (1), a
Gaussian, and for m = 1, Eq. (6) reduces to Eq. (2), a Lorentzian.
Obviously, by varying m from 0 to 1 we can proceed from a pure
Gaussian to a pure Lorentzian function. Clearly,m could be a param-
eter in an algorithm used to fit XPS narrow scans. Fig. 6 shows the
GLS function (Eq. (6)) for three values of m: m = 0 (the blue/bottom
line), which (again) is a Gaussian, m = 1 (the yellow/top line), which
is a Lorentzian, and m = 0.5 (the red/middle line), which runs
between the other two functions. Fig. 7 goes a little further, zoom-
ing in on the region where the Gaussian and Lorentzian functions
differ and showing results for m = 0, 0.1, 0.3, 0.5, 0.7, and 1. It is
clear that the GLS allows variation in a reasonable way between a
pure Gaussian and a pure Lorentzian function.

The GLP function is defined in Eq. (7). As expected from its
name, it consists of the product of a Gaussian and a Lorentzian
function. As was the case for the GLS, the GLP contains a mixing
parameter, m, and values of m = 0 and m = 1 in Eq. (7) yield pure
Gaussian (Eq. (1)) and pure Lorentzian functions (Eq. (2)),
respectively.

GLPðx; F; E;m; hÞ ¼ h � exp �4 ln2ð1�mÞ ðx� EÞ2
F2

" #

� 1

1þ 4m ðx�EÞ2
F2

h i ð7Þ

At this point, it may appear that the GLS and GLP functions are
interchangeable, but this is not the case. Fig. 8 shows the GLP func-
tion for m = 0, 0.5, and 1. It is clear here that while the m = 0.5 GLS
function was approximately in the middle of the pure Gaussian and
Lorentzian functions (see Fig. 6), the m = 0.5 GLP function differs
only slightly from the pure Gaussian. The obvious reason for this
is that, as suggested above, the Gaussian function is ‘more con-
tained’ than the Lorentzian function – it goes to zero faster. As a
result, when the Lorentzian and Gaussian functions in Fig. 8 are
multiplied together, the ‘wings’ of the Lorentzian are multiplied
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Fig. 6. Graph of the GLS function (Eq. (5)) with parameters h = 1, E = 0, and F = 1 for
m = 0 (bottom, blue line), m = 0.5 (middle, red line), and m = 1 (top, yellow line).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Graph of the GLP function (Eq. (7)) with parameters h = 1, E = 0, and F = 1 for,
going from bottom to top, m = 0 (blue line), m = 0.5 (red line), m = 0.9 (yellow line),
and m = 1 (green line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
by values that are quite close to zero with the result that they lar-
gely disappear. These conclusions are further confirmed in Fig. 9,
which shows an enlarged view of them = 0.5 GLP function and also
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of the m = 0.9 GLP function. A priori, one might expect that a mix-
ing parameter of 0.9 would yield a GLP function that would rather
closely resemble/follow a pure Lorentzian function. However, even
at m = 0.9 the GLP function only appears to be about half way
between the pure Gaussian and pure Lorentzian, where this repre-
sentation/extension of the function still poorly represents the
‘wings’ of the Lorentzian, cf., Fig. 7.

For comparison to the use of m in this work, four XPS instru-
ment manufacturers and an XPS software company were surveyed
to determined how they handle the mixing parameter in the
Gaussian-Lorentzian mixture functions in their software. Four of
the companies: CasaXPS (UK), Kratos (Manchester, England), Specs
(Berlin, Germany), and ThermoFisher (East Grinstead, UK) use
m = 0 for the pure Gaussian and m = 1 for the pure Lorentzian.
Interestingly, the default peak for peak fitting in the software
package of one of these XPS companies is a GLP with m = 0.3.
Fig. 8 suggests that this synthetic peak shape is very nearly a
Gaussian. Also, m is presented in two of these software packages
as a percentage running from 0 to 100 (see, for example, the peak
fits in the Supporting Information that were performed in
CasaXPS). However, PHI (Chanhassen, MN) takes the opposite
approach, using m = 0 for its pure Lorentzian. Beamson and Briggs
similarly used a GLS withm = 0 corresponding to a pure Lorentzian
and m = 1 to a pure Gaussian [23].

Around 1980, the GLP function was recommended in the litera-
ture for XPS narrow scan peak fitting [24]. This suggestion appears
to have been relatively influential. However, a later paper in 2007
by Hesse, Streubel, and Szargan [12] did not confirm the previous
recommendation. In their analyses of synthetic, Voigt-based XPS
spectra, i.e., they did not use real data, the GLS function mathemat-
ically/theoretically outperformed the GLP. In their work, Hesse and
coworkers plotted the GLS with m = 0.5, the GLP with m = 0.5, and
the Voigt function, all with widths of 2. This plot is reproduced in
Fig. 10, albeit with the peaks shifted to the origin so they can be
better compared to the peaks in the other figures in this document.
The Voigt function (yellow line) is the widest of the three func-
tions. The red line just inside it is the GLS function. Obviously
the GLS function approximates the Voigt function quite well. The
lowest line in Fig. 10 is the GLP. It is clearly a less adequate approx-
imation of the Voigt function. In 2003, Fairley also discussed this
issue, noting, as had Hesse, the significant decrease of the Lorent-
zian’s wings when it is multiplied by a Gaussian [19,10].
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Fig. 10. Graphs of the GLS function with m = 0.5 (red line), the GLP function with
m = 0.5 (blue line), and the Voigt function (yellow line). All three functions have
widths of 2 and are centered at the origin. The Voigt function here is the
convolution of a Gaussian function with a width of 1.3 and a Lorentzian function
with the same width. A figure similar to this one previously appeared in paper by
Hesse and coworkers [12]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
2.2. Practical applications of the GLP and its comparison to the GLS
function

At this point one might argue that the GLS should be favored
and the GLP deprecated, where the mathematical reasoning out-
lined and cited here is supportive of this position. However, at
some point, the most important test of a synthetic line shape is
not the theory behind it but rather its effectiveness in fitting real
data. As shown in this section, the GLP appears to more effectively
fit some XPS narrow scans, which indicates that it remains a useful
synthetic line shape for XPS narrow scan analysis. Modern XPS
instruments have seen an increase in energy resolution for both
the spectrometer and X-ray source. As the spectral resolution con-
tributions from the spectrometer and source, which are both Gaus-
sian in shape, decrease, an increase in the resolution contribution
from the core-line, which is Laurentian in shape, is seen (barring
other effects as mentioned earlier).

The three examples below illustrate the use of the GLP in XPS
narrow scan analysis. The spectra and fits corresponding to these
analyses, which were performed in CasaXPS, are in the Supporting
Information. Note that ‘GL’ and ‘SGL’ in CasaXPS are the same as
GLP and GLS, respectively, in this work.

(a) The first example shows an Mo 3d spectrum from a sample
of MoO3. The two signals here are the Mo 3d5/2 and 3d3/2

peaks. They are expected to be mostly Gaussian in nature
and are due to spin-orbit splitting. These same peaks with
the same Shirley background and similar background end-
points were best fit with a GLP with m = 29 and a GLS with
m = 5. The fit residual values for these fits were very similar:
2.539 and 2.699, respectively. The fitting functions here do
not differ much from pure Gaussians, and for all practical
purposes the fits are identical.

(b) The second example shows the S 2p spectrum from MoS2.
These spin-orbit signals (the S 2p3/2 and 2p1/2) are expected
to have more Lorentzian character than the signals in the
previous example. Best fits to these peaks were obtained
with a GLP with m = 62 and a fit residual value of 1.758
and a GLS with m = 17 and a fit residual value of 2.079. Here
the GLS is not able to fit the data as well as the GLP.

(c) The third example is the Cu 2p3/2 signal from a sample of
sputter-cleaned metallic copper. Best fits to this peak were
obtained with a GLP with m = 60 and a fit residual of 3.931
and a GLS with m = 80 and a fit residual of 1.804. The GLS
does a very poor job here and is unable to fit this experimen-
tal line shape. Quantitation with the GLS here would be
problematic.

Thus we see the practical value of having multiple synthetic line
shapes at our disposal for XPS narrow scan analysis.
3. Conclusions

In this article we have discussed a series of line shapes that are
important for XPS peak fitting. These include the Gaussian, Lorent-
zian, GLS, GLP, and Voigt functions, which are discussed and/or
presented symbolically in the context of signal processing mathe-
matics, e.g., convolution. Plots of the GLS and GLP are shown with
different values of the mixing parameter, m. The parameter m is
defined differently by different XPS hardware and/or software
companies. Plots of the GLS show that it is a better mathematical
representation of a function that is intermediate between a pure
Gaussian and a pure Lorentzian. The GLS also appears to be a better
approximation of the Voigt function. Because of the more compact
nature of the Gaussian, the GLP does not have significant ‘wings’,
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and for low values of m it is a rather close approximation of a pure
Gaussian. Nevertheless, as illustrated with three examples, the GLP
is also a useful synthetic line shape for XPS narrow scan peak
fitting.
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